
 

INTRODUCTION

The reconstruction of 3D PET data is a computationally
intensive task, especially for dynamic or whole-body studies
involving several scans of the same patient. Depending on the
available computational hardware, on the type of studies and
on the required patient throughput, reconstruction time may
still limits the clinical applications of 3D PET. This
motivates continuing research for faster reconstruction
algorithms for 3D PET data. The fastest methods to date are
based on rebinning methods [1-7] which factor the 3D field-of-
view into a stack of parallel transaxial slices and estimate,
starting from the measured data, the 2D Radon transform (the
sinogram) of the tracer distribution in each of these slices.
Rebinning thereby reduces the redundant 3D data to a stack of
independent 2D sinograms which can be reconstructed using
either 2D filtered-backprojection (FBP) or 2D iterative
algorithms such as OSEM.

A practical rebinning method is the Fourier rebinning
algorithm [FORE 4,5,6,8]. This algorithm is based on the
application of the frequency-distance relation to the 2D Fourier
transform of each oblique sinogram. The frequency-distance
relation is accurate only for large values of the frequency. This
is why the accuracy of FORE decreases with increasing values
of the angle θ between the LORs and the transaxial slices.
Nevertheless, this algorithm is used routinely by several
groups and was shown to be sufficiently accurate for most
clinical studies with the current multi-ring PET scanners
which have axial apertures not exceeding about θmax≈15
degrees.  In addition to its approximate character,  a second
limitation of FORE is that it modifies the statistical properties
of the data: contrary to the measured 3D data, the rebinned
sinograms are not distributed as independent Poisson variables
and hence should not in principle be reconstructed using
standard statistical algorithms such as OSEM. In fact, OSEM
is a very robust algorithm which has been applied with good
results to 2D data rebinned using FORE [8,9,10].

Owing to these two limitations -the approximate character of
FORE and its complex effect on data statistics- it is likely that
fully 3D iterative algorithms [see e.g. 7] will eventually
replace the rebinning algorithms, at least if the available
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computation power increases more rapidly than the number of
LORs acquired by the scanners. Todate, however, fast
reconstruction using rebinning algorithms remains attractive
for scanners such as the ECAT HHRT [14,15] which acquire
data sets which are still too large for a routine application of
3D iterative algorithms. But these scanners are precisely those
for which the axial aperture is largest (it exceeds 20 degrees),
and for which the approximation in FORE may degrade axial
resolution. This was recently demonstrated  with phantom
studies on the ECAT HRRT scanner  [15,16].

These observations suggest to investigate the potential benefit
of applying an exact rebinning algorithm, FORE-J [12,13], to
the HRRT scanner. This algorithm is exact but can be applied
directly to axially truncated data,  avoiding the reprojection
step required  by the reprojection method [3DRP, 17] or by the
other exact rebinning algorithm described in the literature,
FOREX [18]. The algorithm FORE-J is based on the property
that the 3D X-ray transform of a function -the quantity
sampled by a 3D PET acquisition- must be solution to the 2nd
order partial differential equation (PDE) first studied by F.
John. From a practical point of view, FORE-J is easy to
implement since it has the same structure as FORE. The only
modification is a small correction added to each oblique
sinogram prior to rebinning. The calculation of this correction
is fast numerically but involves a second derivative of the data
with respect to the axial variable z, a quantity which is
sensitive to noise.

Until now, FORE-J has only been applied to simulated data
which did not model the axial undersampling used in practice
or the effect of gaps in the detectors.
The aim of the present paper is to evaluate the practical
usefulness of the algorithm using data from the ECAT HRRT
scanner. In particular we
- compare FORE-J with FORE in terms of spatial resolution
and clinical image quality,
- investigate the influence of the detector gaps on the use of
rebinning algorithms,
- investigate stable yet accurate methods to estimate the second
derivative in the FORE-J correction term.

IMPLEMENTATION OF FORE-J

The HRRT scanner has an axial field-of-view of 25.2 cm and
comprises 104 "rings" of detectors. Each "ring" has an
octogonal geometry. The list mode data from the HRRT are
reorganized into sinograms with 256 radial elements and 288
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angular samples. The radial sinogram sampling interval is
1.22 mm. Because of the junctions between the eight sides of
the octogonal detector, the sinograms cannot be measured in
eight diagonal bands called "gaps". In the angular variable,
each gap covers about 6 samples out of the 288.

To reduce the amount of data to store and process, axial
angular undersampling (compression) is normally used in the
HRRT scanner. In this paper we use the current  sinogram set
which consists of 2209 sinograms (Span 9, ring difference 67,
325.7 Mbyte) and recovers 88% of the LOR information.

Before applying Fourier based rebinning the gaps in each
sinograms are filled with a linear interpolation in the angular
direction, using the standard routine in the ECAT software.  

The basic equation of the FORE-J algorithm is [12,13]
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In this equation, Preb( ,k,z0) is the 2D Fourier transform of
the rebinned sinogram for the transaxial slice z0 and P( ,k,z, )
is the 2D Fourier transform of a measured oblique sinogram,
where  is the tangent of the angle θ between the oblique
LORs and the transaxial plane, and z is the axial coordinate of
the mid-point of the LORs. The variables  and k denote
respectively the radial and azimuthal frequencies. The first term
in the RHS corresponds to the FORE algorithm, and the
second term (second line) is the additive correction in the
FORE-J method. The frequencies ω=0 (in practice smaller than
some small threshold) are rebinned using a single-slice
rebinning approach, using only small values of θ.

For the result presented in this abstract, the second derivative
of the sinograms with respect to the axial variable z (the slice
index) was estimated using a three point mask (1,-2,1).
Alternative methods will be tested.

After rebinning, each sinogram was reconstructed using 2D
filtered-backprojection with a ramp filter (rectangular window
cut-off at Nyquist's frequency). For the brain scan shown
below, the resulting image was smoothed with a 3D gaussian
filter with a FWHM of 1.6 pixel.

RESULTS

Simulated line source

A line source located in the central transaxial slice (FWHM
2.4 mm) was simulated as a digital 3D image, and 3D data

were generated by ray tracing (Joseph's reprojection method
with linear interpolation) through this digital image. The axial
and transaxial FWHM of the reconstructed line source was
estimated as a function of the position along the line.

Figure 1 shows the results obtained with FORE-J, with and
without simulated gaps. In the absence of gaps, the transaxial
and axial resolutions are almost independent of the radial
position, as could be expected since the algorithm is exact and
the simulation did not model the position dependence of the
detector  response. When the gaps are present and are filled by
interpolation before rebinning, the axial resolution is degraded
by about 0.5 mm. Note that the effect of the gaps on the
resolution depends on the radial position.

The comparison with the approximate algorithm FORE (figure
2) illustrates the potential improvement of image quality
allowed by the use of an exact rebinning algorithm, at least for
a large aperture scanner such as the HRRT.

Figure 1. FWHM of the reconstructed simulated line source as
function of the radial distance from the axis of the scanner. The
axial (full curve) and transaxial (dashed  curve) resolutions are
shown for the case where the detector gaps are not simulated
(red) and  for a simulation including the gaps (blue).

Figure 2. FWHM of the reconstructed simulated line source as
function of the radial distance from the axis of the scanner. The
axial (full curve) and transaxial (dashed  curve) are shown for
the FORE (red) and FORE-J algorithms (blue, same data as in
figure 1) . The simulation includes the detector  gaps. The full
horizontal line indicates the FWHM of the simulated line.



Brain scan

An FDG brain scan was reconstructed using both FORE and
FORE-J, with a voxel size of 1.22 mm. The total
reconstruction time for the two algorithms was respectively
500 s and 717 s. The reconstructions are very similar but
FORE-J introduces faint artefacts which appear  as horizontal
lines in the coronal and sagittal slices, and as rings in the
transaxial sections (figures 3). These artefacts are not visible
with FORE (not shown) and are tentatively attributed to noise
propagation in the calculation of the second derivative. These
artefacts are hardly visible on the smoothed images in figure 4
and 5, which would be used in practice. A close inspection of
these images, and a comparison with a 3D OSEM
reconstruction (8 subsets, 2 iterations, about 4 hours per
iteration) reveals several details in the cortical structures which
are better reproduced by the FORE-J reconstruction than by
FORE. One example shown in figure 6 is the separation
between the cortex and the cerebellum (tentorium cerebelli).

CONCLUSION

Even though the spatial resolution is also limited by the
presence of gaps and by the axial undersampling, the exact
rebinning algorithm FORE-J significantly improves the axial
resolution for the ECAT HRRT scanner. The implementation
of FORE-J only requires a minor modification of FORE,
which only slightly increases the total reconstruction time.
FORE-J appears to better reveal some fine details in the brain
scan. However, the preliminary implementation of FORE-J
introduces low level artefacts. Alternative methods to discretize
the second derivative term in FORE-J will be investigated, and
additional tests with phantom ("point" source) and clinical data
will be presented at the conference.
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Figure 3. Reconstruction of the brain scan with the exact rebinning algorithm FORE-J, followed by 2D filtered-bacprojection
with a rectangular window. Note the ringing artefacts in the transaxial slice.



Figure 4. Reconstruction of the brain scan with the exact rebinning algorithm FORE-J, followed by 2D filtered-bacprojection and
3D Gaussian post smoothing (FWHM 1.6 pixel).

Figure 5. Reconstruction of the brain scan with the approximate rebinning algorithm FORE, followed by 2D filtered-
bacprojection and 3D Gaussian post smoothing (FWHM 1.6 pixel).

Figure 6. Coronal slice of the brain scan. Left: 3D OSEM with scatter correction, 8 subsets, 2 iterations. Middle: FORE+FBP as
in figure 5, Right: FORE-J+FBP as in figure 4 (both without scatter correction). The gray scale is the same for FORE and
FORE-J, but not for 3D OSEM. Note the different noise structure and better contrast in the scatter corrected 3D-OSEM image,
and  the finer detail (arrow) seen in FORE-J than with FORE.




